Table

Worksheet METc lab 1

rev 12

1 Sine wave visualization

$$f_1 = f_{generator} =$$

a)
$$C_{X1} =$$

$$N_{X1} =$$

$$T_{m \check{a} s 1} =$$

$$f_{m ilde{a} s 1} = 1/T_{m ilde{a} s 1} =$$

b)
$$C_{X2} =$$

$$N_{X2} =$$

$$T_{m\check{a}s2} =$$

$$f_{m \check{a} s 2} = 1/T_{m \check{a} s 2} =$$

c)
$$A_1 = C_{Y1} =$$

$$N_{Y1} =$$

$$U_V =$$

$$N_{Y2} =$$

$$U_{VV} =$$

 U_V/U_{VV} (measured) =

 U_V/U_{VV} (theoretical)=

2. Setting a triangular signal from the generator

a1.
$$f_2$$
=

$$U_{V2} =$$

$$T_2 =$$

$$C_X = N_X =$$

$$N_X =$$

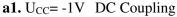
$$C_Y = N_Y = 2 \text{ div}$$

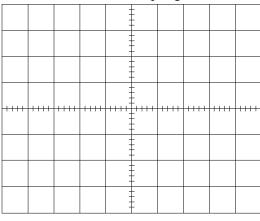
b)
$$C_Y' =$$

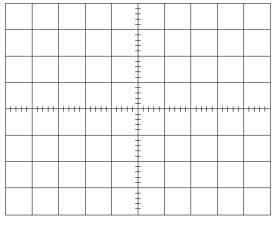
$$N_{Y}' =$$

$$Uv' =$$

$$U_{V2} =$$


Explanations:

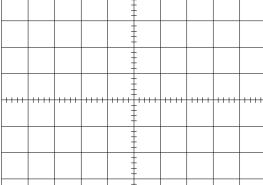

c)
$$C_X' =$$


$$T_2 =$$

Explanations:

3. Generation and measurement of a sine wave with DC component; Draw the arrow that indicates the 0V level!

- $C_Y =$
- [V/div] $C_X=$
- [s/div]
- $C_Y =$
- [V/div] $C_X=$
- [s/div]


b) DC level measurement; values selected by students; write also the sign of N_Y!

- b1) $N_{Y1} =$
- [div]
- $U_{CC1} =$
- [V]
- $C_{Y1}=$
- [V/div]

- [V]
- $C_{Y2}=$

- b2) $N_{Y2} =$
- [div]
- $U_{CC2} =$

- [V/div]

b1) DC Coupling

b2) DC Coupling

OBS: Draw the arrow that indicates the 0V level! *Explanations AC* \rightarrow *DC and not DC* \rightarrow *AC:*

4. Setting a square (rectangular) signal

$$U_{V4} =$$

$$f_4 =$$

$$T_4 = 1/f_4 =$$

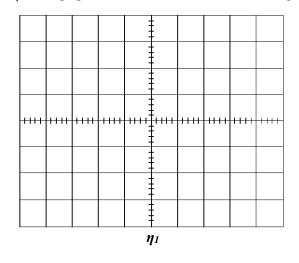
$$C_X =$$

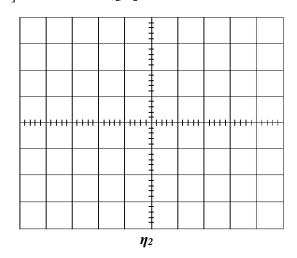
$$C_Y =$$

$$\eta_1 = 20 \ [\%]$$

$$\tau_I =$$

$$\tau_1/T_1 =$$


$$\eta_2 = 50 \, [\%]$$


$$\tau_2 =$$

$$T_2=$$

 $T_1 =$

$$\tau_2/T_2 =$$

OBS: Draw the arrow that indicates the 0V level!